

Evaluation report on state

of the art algorithms for

sustainability services
Technical report on multi modal

tracking and activity mode

recognition

Version 1

Deliverable 3.2

Project title: SimpliCITY – Marketplace for user-centered

sustainability services

Project acronym: SimpliCITY

Project duration:

Project number:

10/2018–03/2021

870739

Work package/Task:

Project website:

WP3 / T3.2.

www.simplicity-project.eu

Authors:

Thomas Layer-Wagner, Polycular OG

Christoph Wögerbauer, Polycular OG

Michael Kager, Polycular OG

Birgit Schönauer, Polycular OG

Irina Paraschivoiu, Polycular OG

This project has received funding in the framework
of the Joint Programming Initiative Urban Europe.

Technical report on multi modal tracking and activity mode recognition SimpliCITY

2

Document versions:

Version Date Changes Author/s

v0.1 23.10.2018 Technical report on multi modal tracking

and activity mode recognition (outline)

Thomas Layer-

Wagner, Robert

Praxmarer

v0.2 10.12.2018 Activity Recognition APIs and Custom

Activity Recognition (draft)

Thomas Layer-

Wagner, Birgit

Schönauer

v0.3 27.09.2019 Update and Revision, Conclusion and

Lessons Learned

Thomas Layer-

Wagner, Robert

Praxmarer, Birgit

Schönauer

v1.0 30.09.2019 Update and Revision Thomas Layer-

Wagner, Birgit

Schönauer

List of abbreviations

AGPS Assisted Global Positioning System

ANN Artificial Neural Network

API Application Program Interface

CNN Convolutional Neural Network

DS Down Sampling

ELM Extreme Learning Machine

GPS Global Positioning System

HAR Human Activity Recognition

LBP Locally Binary Pattern

WiFi Wireless Fidelity

WL Window Length

Technical report on multi modal tracking and activity mode recognition SimpliCITY

3

Table of contents

1 Executive Summary .. 4

2 Administrative Information .. 5

3 Introduction ... 6

4 Activity Recognition API .. 8

5 Custom Activity Recognition .. 25

6 Conclusions... 32

7 Lessons learned .. 35

8 References ... 37

Technical report on multi modal tracking and activity mode recognition SimpliCITY

4

1 Executive Summary

SimpliCITY will be a service platform, developed by a project consortium and will be

implemented and tested in the cities of Salzburg (AT) and Uppsala (SWE). The platform will

use incentivisation and nudging to boost green services on a city level. The project focus is on

three areas namely bike mobility, local production and consumption and social inclusion. For

cities and their city managers it should become easier to promote and boost regional green

services through a unified channel and platform. The platform will provide information,

incentives and challenges to support services, so that not every single service has to have its

own incentivisation and nudging system, but one throughout the city, that ties the different city

services together and creates a shared user base.

In the SimpliCITY mobile application “cycling” as green and sustainable mode of transportation

constitutes a central topic. Users will be able to start bike tracking and receive not only

information on environment and health benefits but also collect points when they finish.

This report discusses the requirements and implications of activity mode recognition of citizens

for SimpliCITY. Activity mode recognition allows the deduction of a transportation mode based

on collected data from built-in sensors in mobile devices. Basic activity modes are e.g.: “on

foot”, “cycling”, “automobile”, “still”. By determining the activity mode users won’t be able to

cheat and collect points for a route, they have driven in a car.

In addition, the multi modal detection of activities potentially allows to reward various activity

modes differently. It also offers interesting insights on how users travel the city and where they

switch to another mode of transportation.

Aim is to research and evaluate existing solutions for activity mode recognition and compare

them with state-of-the-art research.

Technical report on multi modal tracking and activity mode recognition SimpliCITY

5

2 Administrative Information

Basic information on the SimpliCITY project and the present deliverable:

Project title SimpliCITY - Marketplace for user-centered sustainability services

Project coordinator Salzburg Research Forschungsgesellschaft mbH (SRFG), Salzburg,

Austria; project manager: Petra Stabauer BSc MSc

Project partners Polycular OG, Hallein, Austria

Stadt Salzburg (City of Salzburg), Austria

Salzburger Institut für Raumordnung und Wohnen – SIR (Salzburg

Institute for Regional Planning & Housing), Salzburg, Austria

Uppsala Kommun (City of Uppsala), Sweden

University of Uppsala, Sweden

Funding JPI Urban Europe, Innovation Actions (Call: Making Cities Work)

Funding is being provided by Vinnova (Sweden) for the Swedish

project partners, and the Austrian Research Promotion Agency

(FFG) for the Austrian project partners.

Project nr. 870739

Deliverable number D3.2

Deliverable title Technical report on multi modal tracking and activity mode

recognition

Authors Thomas Layer-Wagner (Polycular), Robert Praxmarer (Polycular),

Birgit Schönauer (Polycular)

Version & status Version 1

Date 30.09.2019

Technical report on multi modal tracking and activity mode recognition SimpliCITY

6

3 Introduction

In the SimpliCITY mobile application “cycling” as green and sustainable mode of transportation

constitutes a central topic. We will reward going distances by bike (or another sustainable

way). Users collect points for cycling but will also receive interesting information on

environmental and health benefits for finishing a route on bike instead of going by car.

Therefore, it is necessary to have some means for detecting the user’s mode of transportation.

Activity mode recognition APIs allow the deduction of different transportation modes based on

collected data from built-in sensors in mobile devices (Fig. 1).

Figure 1 taken from Wang 2019, p.10871

Built-in sensors provide raw data, from which features are derived and a feature vector is

calculated. A classifier maps the feature vector to a transportation mode.

Given the near ubiquity of mobile phones and their various built-in sensors, these devices

are the perfect means to gather rich sensor data in relation to user Multi Modal Tracking and

Activity Recognition. The recognition of user activity modes bases on location and motion

systems.

In general, radio frequency signals are used to determine the location of a mobile phone

(mainly GPS, AGPS, WiFi, Bluetooth and cellular networks), built-in sensors (e.g.

accelerometer and gyroscope) provide information on motion data for Activity Mode

deduction (e.g. walking, cycling, …).

The geographic location and orientation can be determined through different APIs.

Most prominent ones are mentioned here:

• Google Maps (cross platform)

• Core Location (iOS -> Apple) & Android.Location (Android -> Google)

subscribe to changes in user’ location specified by distance /time

• as well as various Geolocator Plugins for Xamarin, React Native

Technical report on multi modal tracking and activity mode recognition SimpliCITY

7

Basic activity modes are e.g.: “on foot”, “cycling”, “automobile”, “still”. By determining the

activity mode users won’t be able to cheat and to collect points for a route, they have driven

in a car.

In addition, the multi modal detection of activities potentially allows to reward various activity

modes differently. It also offers interesting insights on how users travel the city and where

they switch to another mode of transportation.

The following activity types are considered in the SimpliCITY mobile app:

Type Type String Description

0 Still

The user (device) is not moving

STILL in Google Activity Recognition API

STATIONARY in Apple Activity Recognition API

1 Walking

The user is on foot, walking.

WALKING in Google Activity Recognition API (is subcategory of ON

FOOT)

WALKING in Apple Activity Recognition API

2 Running

The user is on foot, running.

RUNNING in Google Activity Recognition API (is subcategory of ON

FOOT)

RUNNING in Apple Activity Recognition API

3 Cycling

The user is cycling.

ON_BICYCLE in Google Activity Recognition API

CYCLING in Apple Activity Recognition API

4 Automotive

The user is a car or other vehicle.

IN_VEHICLE in Google Activity Recognition API

AUTOMOTIVE in Apple Activity Recognition API

5 Unknown

There was no activity recognized.

Often occurring when there is an activity transition.

UNKNOWN, TILTING in Google Activity Recognition API

UNKNOWN in Apple Activity Recognition API

There are two approaches for recognizing activity modes in an application.

First, Activity Recognition APIs eliminate the need to define fine grained heuristics for a

custom Activity Mode Recognition and are available for different platforms. Some solutions

target cross platform applications. Available Activity Recognition APIs will be characterized in

short, including their range of detectable activities and information on power consumption, if

available.

Technical report on multi modal tracking and activity mode recognition SimpliCITY

8

Second, creating a Custom Activity Recognition.A state-of-the-art approach will be described

in chapter “Custom Activity Recognition”. In general, much more time and effort must be

invested in the creation of a custom-made solution, which should outperform available APIs

in some of the following characteristics, to make worth the effort.

Ideally, Activity Recognition considers the following:

• accuracy (also in relation to the location of the mobile phone on the user’s body / in

car, …)

• latency should be within an acceptable range for the according application

• low power consumption (when possible, e.g. activity mode still with low update rates)

• complexity and real-time capability (-> Custom Activity Recognition)

Ultimately, there is always a trade-off between accuracy, power consumption and real-time

updates.

Activity Recognition API

This section consists of two parts. In the first part, we provide a short overview on main

characteristics of various available activity recognition APIs for different platforms. We also

address important topics like power consumption and accuracy.

The second part introduces each API and describes implementation as well as usage details.

4.1.1 Detected Activity Modes for Different Platforms in Overview:

ANDROID

- Google:

Activity Modes: still, on_foot (incl. subactivities: walking, running), on_bicycle,

in_vehicle, tilting (e.g. device pick-up), unknown

Functionality: uses machine learning and only on-board smartphone sensors

iOS

- Apple:

Activity Modes: stationary, walking, running, automotive, cycling, unknown

Functionality: coprocessor processes data from built-in sensors and derives activity

modes using a neural network

- LocoKit – open source (announces Android SDK coming soon)

Activity Modes: stationary, walking, running, cycling, automotive (distinguishes car,

train, bus, motorcycle, airplane, boat)

Functionality: machine learning

 allows queries e.g. timeline items for a specific geographic region, for a

specific activity mode, timeline items above/below a speed value

CROSS PLATFORM

Technical report on multi modal tracking and activity mode recognition SimpliCITY

9

• React-native, Xamarin, Flutter or Unity Activity Recognition

wrapping Android and iOS functionality

• PathSense (for Android 2.3+ (Api Level 9) or iOS) – free

https://pathsense.com/awesomeactivity

Activity Modes: walking, driving, holding, still, shaking, in-vehicle holding

Functionality: machine learning.

Models for additional activities (e.g. cycling) are planned

Includes Location service

Claims to be 6 x faster, more accurate and ½ battery consumption compared to

Google Activity Recognition API.

This solution was not considered, since cycling detection has not been implemented

yet.

• Tizen – not considered

https://developer.tizen.org/dev-guide/tizen-iot-

headed/latest/group__CAPI__CONTEXT__ACTIVITY__MODULE.html#gae17e97a1

a51a9d5d5d8330f29f4a895d

Activity Modes: stationary, walk, run, in_vehicle

Again lack of cycling detection ruled this solution out.

4.1.2 Power Consumption

Google’s Activity Recognition for Android

Google’s recognition detection allows to set a detection interval for the updating frequency

of activities (detectionIntervalMillis). Smaller values result in more frequent activity updates

and therefore an increased power consumption. Since only data from built-in sensors is

used battery consumption is reduced.

If the device is still for an extended period, the activity reporting may stop and resume once

the device is moving again. This conserving battery function is only available for devices

which support the Sensor.TYPE_SIGNIFICANT_MOTION hardware.

Beginning in API 21, activities may be received less frequently than the

detectionIntervalMillis parameter if the device is in power save mode and the screen is off.

Apple’s Activity Recognition for iOS

Devices use a motion coprocessor thus running all sensor processing on this dedicated

hardware and reducing the CPU load and reducing energy usage.

LocoKit Activity Recognition for iOS

LocomotionManager dynamically adjusts various device monitoring parameters, balancing

current conditions and desired results to achieve the desired accuracy in the most energy

efficient manner.

https://pathsense.com/awesomeactivity
https://pathsense.com/awesomeactivity
https://pathsense.com/awesomeactivity
https://developer.tizen.org/dev-guide/tizen-iot-headed/latest/group__CAPI__CONTEXT__ACTIVITY__MODULE.html#gae17e97a1a51a9d5d5d8330f29f4a895d
https://developer.tizen.org/dev-guide/tizen-iot-headed/latest/group__CAPI__CONTEXT__ACTIVITY__MODULE.html#gae17e97a1a51a9d5d5d8330f29f4a895d
https://developer.tizen.org/dev-guide/tizen-iot-headed/latest/group__CAPI__CONTEXT__ACTIVITY__MODULE.html#gae17e97a1a51a9d5d5d8330f29f4a895d

Technical report on multi modal tracking and activity mode recognition SimpliCITY

10

4.1.3 Accuracy

Activities do not only have a type (e.g. “Walking”) but also provide a confidence value of

detection. In Android the confidence value ranges from 0 to 100, whereas in iOS confidences

of Low, Medium and High are offered. Since machine learning is used for Activity

Recognition, it is assumed that used models are updated by Google and Apple at some

frequency. Therefore, reviews on different characteristics should be interpreted in relation to

the time of testing.

In general, there are surprisingly few evaluations on proprietary Activity Recognition APIs.

Apart from improvements from older to current API-versions provided by Google/Apple, there

are some few reviews by companies which took part in beta testing. Still, most of these (e.g.

Stogaitis 2018) simply mention an overall improvement of accuracy and less power

consumption using the latest API. No evaluation comprised of in-depth-data like accuracy

percentages for each mode.

Overall, there will always be some latencies in Activity mode detection because the transition

from one state to another does necessarily take some time. Some reviews mentioned

though, that latencies were reduced when the mobile phone was in a somewhat fixed

position (e.g. mounted in car) rather than being pocketed or handheld.

Reviews on Google’s Activity Recognition for Android

2018 reviews: Cross 2018, Prajakt 2018

• Latency

o 1 min. reporting activity transition from actual transition

o Appears biased towards in_vehicle, as this transition more frequently arrived

sooner than walking

o In_vehicle detected quickly when mounted, having a higher latency when in cup

holder

• Accuracy

o Fairly accurate when actual activity transitions occurred

o Walking was not always detected, esp. when in hand and walking

o In slow motion traffic, a continuous drive would be reported as a mix of:

in_vehicle, on_bicycle, still

o No false positives

• Battery results

o less battery drains than before

Both devices were fully charged at test start.

Test duration: 50min.

The Activity Transitions API ran in the background 90% of the time, both screens

turned off

o Samsung S8: 67% remaining

o Google Pixel: 80% remaining

2017 review: Zhong 2017

Technical report on multi modal tracking and activity mode recognition SimpliCITY

11

• Latency

o ranging from 4 - 12 seconds (cycling mode). Here, it was also noted that different

interval settings did not have any impact on the accuracy.

• Accuracy

o most problems with stationary (39% - got mixed up with tilting, unknown), cycling

68% (often confused with tilting esp. when traveling on uneven roads) other

modes ranging from 73% to 88%.

2013 review: Jackpotek 2013

- Accuracy

o (tested driving, on foot, bike) very accurate for on_foot and in_vehicle

Riding a bike included many tilt and unknown:

Figure 2 taken from Jackpotek 2013

This figure shows detected activities while traveling in different modes. As the figure shows,

walking was accurately detected, whereas various modes were recognized while riding a bike.

Reviews on Apple’s Activity Recognition for iOS

Surprisingly, hardly any reports on the accuracy of Apple’s CoreMotion package could be

found. Similar to the Google’s API some problems have been reported with correct cycling

mode detection (Veugen 2015). Only advertising articles (Veugen 2015) on new coprocessor

releases mention improved processing of motion and location data through gathered data,

while reducing battery drain.

2014 review: Apple WWDC 2014

- Latency

o running, walking (5-10sec) - vehicle very fast, when in cup-holder, otherwise

about the time of walking, cycling taking the most time to be detected (no nr of

seconds provided “a lot longer”)

- Accuracy

o overall high

Technical report on multi modal tracking and activity mode recognition SimpliCITY

12

4.2 Cross-Platform Activity Recognition

These solutions wrap proprietary Activity Recognition APIs from Google (Android) and Apple

(iOS).

4.2.1 React native activity recognition (Artistic License 2.0)

https://www.npmjs.com/package/react-native-activity-recognition

Updated January 7th and tested with react-native v0.57.5

This chapter includes installation and setup details as well as a short description on using the

API on each platform.

Installation

npm i -S react-native-activity-recognition

or with Yarn:

yarn add react-native-activity-recognition

Linking (Automatic)

react-native link react-native-activity-recognition

You also must manually add the according permission in the manifest file in Android (see

below: Android, Step 4) and the according key to Info.plist in iOS (see below: iOS, Step 4).

Linking (Manually)

Android

1. Add following lines to android/settings.gradle
...

include ':react-native-activity-recognition'

project(':react-native-activity-recognition').projectDir =

new File(rootProject.projectDir, '../node_modules/react-native-activity-

recognition/android')

...

2. Add the compile line to dependencies in android/app/build.gradle
...

dependencies {

...

compile project(':react-native-activity-recognition')

...

}

3. Add import and link the package in android/app/src/…/MainApplication.java
import com.xebia.activityrecognition.RNActivityRecognitionPackage; // add import

public class MainApplication extends Application implements ReactApplication {

// …

https://www.npmjs.com/package/react-native-activity-recognition

Technical report on multi modal tracking and activity mode recognition SimpliCITY

13

@Override

protected List<ReactPackage> getPackages() {

 return Arrays.<ReactPackage>asList(

 new MainReactPackage(),

 // …

 new RNActivityRecognitionPackage() // add package

);

 }

4. Add activityrecognition service in android/app/src/main/AndroidManifest.xml
...

<application ...>

 ...

 <service android:name="com.xebia.activityrecognition.DetectionService"/>

 ...

</application>

...

iOS

1. In the XCode's "Project navigator", right click on your project's Libraries folder

➜ Add Files to <...>

2. Go to node_modules ➜ react-native-activity-recognition ➜ ios ➜ select

RNActivityRecognition.xcodeproj

3. Add RNActivityRecognition.a to Build Phases -> Link Binary With Libraries

4. Add NSMotionUsageDescription key to your Info.plist with strings describing why

your app needs this permission

Usage

import ActivityRecognition from 'react-native-activity-recognition'

...

// Subscribe to updates

this.unsubscribe = ActivityRecognition.subscribe(detectedActivities => {

 const mostProbableActivity = detectedActivities.sorted[0]

})

...

// Start activity detection

const detectionIntervalMillis = 1000

ActivityRecognition.start(detectionIntervalMillis)

...

// Stop activity detection and remove the listener

ActivityRecognition.stop()

this.unsubscribe()

Android

detectedActivities is an object with keys for each detected activity, each of which have an

integer percentage (0-100) indicating the likelihood – confidence - that the user is performing

this activity. For example:

Technical report on multi modal tracking and activity mode recognition SimpliCITY

14

{

 ON_FOOT: 8,

 IN_VEHICLE: 15,

 WALKING: 8,

 STILL: 77

}

Additionally, the detectedActivities.sorted getter is provided which returns an array of

activities, ordered by their confidence value:

[

 { type: 'STILL', confidence: 77 },

 { type: 'IN_VEHICLE', confidence: 15 },

 { type: 'ON_FOOT', confidence: 8 },

 { type: 'WALKING', confidence: 8 },

]

Because the activities are sorted by confidence level, the first value will be the one with the

highest probability. ON_FOOT and WALKING are related but won't always have the same

value.

The following activity types are supported:

• IN_VEHICLE

• ON_BICYCLE

• ON_FOOT

• RUNNING

• WALKING

• STILL

• TILTING

• UNKNOWN

iOS

detectedActivities is an object with key to the detected activity with a confidence value for

that activity given by CMMotionActivityManager. Confidence range in iOS is 0-2 according to

confidence enums Low, Medium, High. For example:

{

 WALKING: 2

}

detectedActivities.sorted getter will return it in the form of an array.

[

 {type: "WALKING", confidence: 2}

]

The following activity types are supported:

• RUNNING

• WALKING

• STATIONARY

• AUTOMOTIVE

• CYCLING

• UNKNOWN

Technical report on multi modal tracking and activity mode recognition SimpliCITY

15

4.2.2 Xamarin.Forms for iOS and Android

http://www.devsdna.com/blog/ArticleID/18/Activity-recognition

Every platform has its own API, objects and definitions. Therefore, it is necessary to create

some shared artefacts to translate platform specific code to shared core code.

After defining a model class ActivityRecognized and a service interface, this service needs to

be implemented on each platform.

public enum ActivityTypes

{

 Stopped = 0,

 Walking = 1,

 Running = 2,

 OnBicycle = 3,

 OnVehicle = 4

}

public class ActivityRecognized

{

 public ActivityTypes ActivityType { get; set; }

 public int Confidence { get; set; }

}

public class ActivityChangedEventArgs : EventArgs

{

 public ActivityChangedEventArgs(ActivityRecognized activity)

 {

 Activity = activity;

 }

 public ActivityRecognized Activity { get; set; }

}

public interface IRecognitionActivityService

 {

 event EventHandler ActivityChanged;

 ActivityRecognized LastActivity { get; }

 void StartService();

 void StopService();

 }

Android needs to have installed the Xamarin.GooglePlayServices.Location nuget package

to access the GooglePlay Services. In addition, in the manifest file permission for

ActivityRecognition must be requested.

To connect to GooglePlay the Callback must be set to receive the response.

public class RecognitionActivityService : Java.Lang.Object,

GoogleApiClient.IConnectionCallbacks, GoogleApiClient.IOnConnectionFailedListener,

IRecognitionActivityService

http://www.devsdna.com/blog/ArticleID/18/Activity-recognition

Technical report on multi modal tracking and activity mode recognition SimpliCITY

16

iOS must create a CMMotionActivityManager which will be responsible for starting and

stopping the Recognition service.

Example implementation:

https://github.com/DevsDNA/DevsDNAActivityRecognitionSample

Activity recognition has to be implemented according to Google, iOS specifications. A

recognized activity will be passed to the (ActivityChanged). By subscribing to the event, we

can act on updated activities.

4.2.3 Flutter

https://flutter.dev/

https://pub.dev/packages/activity_recognition_alt

https://github.com/tonywei92/flutter_activity_recognition

Activity recognition plugin for Android and iOS. Only working while App is running (= not

terminated by the user or OS)

Android Integration

• Add permission to manifest

<uses-permission android:name="com.google.android.gms.permission.ACTIVITY_RECOGNITION" />

• Add plugin

<service

android:name="at.resiverbindet.activityrecognition.activity.ActivityRecognizedService" />

IOS Integration

An iOS app linked on or after iOS 10.0 must include usage description keys in its Info.plist

file for the types of data it needs. Failure to include these keys will cause the app to crash. To

access motion and fitness data specifically, it must include NSMotionUsageDescription.

import

'package:activity_recognition/activity_recognition.dart';ActivityRecognition.activityUpdate

s()

GitHub providing example project.

4.2.4 Unity Activity Recognition (Price €4.47, no ratings yet)

https://assetstore.unity.com/packages/tools/integration/user-activity-recognition-140756

http://www.kokosoft.pl/user-activity-recognition-docs/

First released on Apr 16, 2019 for Unity versions 2017.3.0 or higher

https://github.com/DevsDNA/DevsDNAActivityRecognitionSample
https://flutter.dev/
https://flutter.dev/
https://pub.dev/packages/activity_recognition_alt
https://pub.dev/packages/activity_recognition_alt
https://github.com/tonywei92/flutter_activity_recognition
https://assetstore.unity.com/packages/tools/integration/user-activity-recognition-140756
http://www.kokosoft.pl/user-activity-recognition-docs/

Technical report on multi modal tracking and activity mode recognition SimpliCITY

17

- Works on both iOS (versions >= 11.0.) and Android (>= 4.0)

- Uses motion detection built in phone devices

- Supports driving, biking, running, stationary and walking

- example scene, doc includes project setup

Technical report on multi modal tracking and activity mode recognition SimpliCITY

18

4.3 Activity Recognition in Android

4.3.1 Google Activity Recognition

https://developers.google.com/location-context/activity-recognition/

The Activity Recognition API is built on top of available device sensors and automatically

detects activities by periodically reading sensor data and processing them using machine

learning models. If the device has been still for a while the API may stop activity reporting to

reduce power consumption and resumes reporting on movement.

The API delivers its results to a callback (IntentService) at specified intervals or the app can

use the results requested by other clients without consuming additional power itself. By using

a PendingIntent you define how the API delivers results and prevent a constantly running

service in the background. Detected activities are sent as list, each activity including a

confidence level as well as type properties.

Setting up the API includes several steps:

https://codelabs.developers.google.com/codelabs/activity-recognition-

transition/index.html?index=..%2F..index#1

1. Add Google Play Services API

2. Add permissions to the app manifest

3. Register for activity updates

4. Process events

5. De-register updates

1. Add Google Play Services APIs

https://developer.android.com/guide/topics/location/transitions#java

In the modules build.gradle file add a new build rule under dependencies:

(check https://developers.google.com/android/guides/setup for current play-services-

location link, as well as general adding of Google Play Services)

apply plugin: 'com.android.application'

…

dependencies {

 implementation ‘com.google.android.gms:play-services-location:17.0.0'

}

The projects build.gradle file needs a reference to the google() repo:

repositories {

 google()

 …

}

…

https://developers.google.com/location-context/activity-recognition/
https://codelabs.developers.google.com/codelabs/activity-recognition-transition/index.html?index=..%2F..index#1
https://codelabs.developers.google.com/codelabs/activity-recognition-transition/index.html?index=..%2F..index#1
https://developer.android.com/guide/topics/location/transitions#java
https://developers.google.com/android/guides/setup

Technical report on multi modal tracking and activity mode recognition SimpliCITY

19

Allrepositories {

 google()

}

Alternatively include a reference to the maven { url "https://maven.google.com" }

2. Add permission for the Activity Recognition API in the manifest

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.example.myapp">

 <uses-permission android:name="com.google.android.gms.permission.ACTIVITY_RECOGNITION"/>

 ...

</manifest>

Up to Android 9 permission for Activity Recognition is granted automatically if the above

snippet is added to the manifest. In Android 10 the user has to grant permission explicitly

unless the app is upgraded to this API and permission has already been granted.

Following, steps for receiving updates on Activity transitions are described. It is also possible

to register for Activity updates at a user defined time interval.

3. Registering for Updates

To start receiving notifications about activity transitions, you must implement the following:

• An ActivityTransitionRequest object that specifies the type of activity and transition

• A PendingIntent callback where your app receives notifications.

First, create a list of ActivityTransition objects, each having an activity type

(DetectedActivity: in_vehicle, on_bicycle, running, walking, still).

Transition types are:

• ACTIVITY_TRANSITION_ENTER

• ACTIVITY_TRANSITION_EXIT

To create the ActivityTransitionRequest object, create a list of objects, which represent the

transition that you want to receive notifications about.

The following code shows how to create a list of ActivityTransition objects:

List<ActivityTransition> transitions = new ArrayList<>();

transitions.add(

 new ActivityTransition.Builder()

 .setActivityType(DetectedActivity.WALKING)

 .setActivityTransition(ActivityTransition.ACTIVITY_TRANSITION_ENTER)

 .build());

transitions.add(

 new ActivityTransition.Builder()

 .setActivityType(DetectedActivity.WALKING)

 .setActivityTransition(ActivityTransition.ACTIVITY_TRANSITION_EXIT)

 .build());

transitions.add(

 new ActivityTransition.Builder()

Technical report on multi modal tracking and activity mode recognition SimpliCITY

20

 .setActivityType(DetectedActivity.STILL)

 .setActivityTransition(ActivityTransition.ACTIVITY_TRANSITION_ENTER)

 .build());

transitions.add(

 new ActivityTransition.Builder()

 .setActivityType(DetectedActivity.STILL)

 .setActivityTransition(ActivityTransition.ACTIVITY_TRANSITION_EXIT)

 .build());

Then, you can create an ActivityTransitionRequest object by passing the list of

ActivityTransitions to the ActivityTransitionRequest class:

ActivityTransitionRequest request = new ActivityTransitionRequest(transitions);

Register for activity transition updates by passing your instance of

ActivityTransitionRequest and your PendingIntent object to the

requestActivityTransitionUpdates() method. The requestActivityTransitionUpdates()

method returns a Task object that can be checked for success or failure, as shown in the

following code example:

// myPendingIntent is the instance of PendingIntent where the app receives callbacks

Task<Void> task =

 ActivityRecognition.getClient(context)

 .requestActivityTransitionUpdates(request, myPendingIntent);

 task.addOnSuccessListener(

 new OnSuccessListener<Void>() {

 @Override

 public void onSuccess(Void result) {

 // Handle success

 }

 }

);

 task.addOnFailureListener(

 new OnFailureListener() {

 @Override

 public void onFailure(Exception e) {

 // Handle error

 }

 }

);

4. Processing Events

When the requested activity transition occurs, your app receives an Intent callback. An

ActivityTransitionResult object can be extracted from the Intent, which includes a list of

ActivityTransitionEvent objects.

The events are ordered in chronological order, for example, if an app requests for the

IN_VEHICLE activity type on the ACTIVITY_TRANSITION_ENTER and

ACTIVITY_TRANSITION_EXIT transitions, then it receives an ActivityTransitionEvent

Technical report on multi modal tracking and activity mode recognition SimpliCITY

21

object when the user starts driving, and another one when the user transitions to any

other activity.

You can implement your callback by creating a subclass of BroadcastReceiver and

implementing the onReceive() method to get the list of activity transition events. For

more information, see Broadcasts. The following example shows how to implement the

onReceive() method:

@Override

protected void onReceive(Context context, Intent intent) {

 if (ActivityTransitionResult.hasResult(intent)) {

 ActivityTransitionResult result = ActivityTransitionResult.extractResult(intent);

 for (ActivityTransitionEvent event : result.getTransitionEvents()) {

 // chronological sequence of events....

 }

 }

}

5. De-registering Updates

You can deregister for activity transition updates by calling the

removeActivityTransitionUpdates() method of the ActivityRecognitionClient and passing

your PendingIntent object as a parameter, as shown in the following example:

// myPendingIntent is the instance of PendingIntent where the app receives callbacks

Task<Void> task =

 ActivityRecognition.getClient(context).removeActivityTransitionUpdates(myPendingIntent);

task.addOnSuccessListener(

 new OnSuccessListener<Void>() {

 @Override

 public void onSuccess(Void result) {

 myPendingIntent.cancel();

 }

 });

task.addOnFailureListener(

 new OnFailureListener() {

 @Override

 public void onFailure(Exception e) {

 Log.e("MYCOMPONENT", e.getMessage());

 }

 });

Example projects:

https://github.com/googlecodelabs/activity_transitionapi-codelab

https://github.com/tutsplus/Android-ActivityRecognition

https://github.com/googlecodelabs/activity_transitionapi-codelab
https://github.com/tutsplus/Android-ActivityRecognition

Technical report on multi modal tracking and activity mode recognition SimpliCITY

22

4.4 Activity Recognition in iOS

4.4.1 Apple: CMMotionActivityManager - Core Motion framework

https://developer.apple.com/documentation/coremotion/cmmotionactivitymanager

Core Motion reports motion- and environment-related data from the onboard hardware of iOS

devices, including from the accelerometers and gyroscopes, and from the pedometer,

magnetometer, and barometer. Core Motion supported devices are equipped with a motion

coprocessor (first M-series coprocessor was shipped in the iPhone 5S, Sept 2013), which

processes data from accelerometer, gyroscope and compass and deducts activity modes

therefrom. By using dedicated hardware, the system can offload all sensor processing from

the CPU and minimize energy usage. Even if the device is in power save mode, this

functionality is not limited.

Although Activity Recognition has been provided since the introduction of the M7

coprocessor, cycling mode detection was added with the M8 coprocessore (iOS 8).

In order to use the activity manager and receive updates on activities, it is necessary to

create an activity manager and use the startActivityUpdate method. Every time the device

updates the motion activity, it executes the specified closure, passing a CMMotionActivity

object.

let manager = CMMotionActivityManager()

manager.startActivityUpdates(to: .main) { (activity) in

 guard let activity = activity else {

 return

 }

 var modes: Set<String> = []

 if activity.walking {

 modes.insert(" ")

 }

 if activity.running {

 modes.insert(" ")

 }

 if activity.cycling {

 modes.insert(" ")

 }

 if activity.automotive {

 modes.insert(" ")

 }

 print(modes.joined(separator: ", "))

}

https://developer.apple.com/documentation/coremotion/cmmotionactivitymanager

Technical report on multi modal tracking and activity mode recognition SimpliCITY

23

As the documentation states, motion-related properties are not mutually exclusive.

Therefore, more than one motion-related property can have the value true. For example, if

the user was driving in a car and the car stopped at a red light, the update event associated

with that change in motion would have both the cycling and stationary properties set to true.

Each CMMotionActivity object includes a confidence property (.low, .medium, .high) and a

startTime.

Wiki: https://wiki.appcelerator.org/display/guides2/Core+Motion+Module#CoreMotionModule-

Activity

4.4.2 LocoKit

https://github.com/sobri909/LocoKit

A Machine Learning based location recording and activity detection framework for iOS. The

LocomotionManager monitors raw device location and motion data and applies filtering and

smoothing algorithms to procute a stream of high level LocomotionSample objects, a

composite representation of the device and user’s location and activity state at each point in

time.

Activity Type Detection

• Machine Learning based activity type detection

• Improved detection of Core Motion activity types

(stationary, walking, running, cycling, automotive)

• Distinguish between specific transport types (car, train, bus, motorcycle, airplane,

boat)

Record High Level Visits and Paths (timelineItem)

• Optionally produce high level Path and Visit timeline items, to represent the recording

session at human level. Similar to Core Location's CLVisit, but with much higher

accuracy, much more detail, and with the addition of Paths (e.g. the trips between

Visits).

• Optionally persist your recorded samples and timeline items to a local SQL based

store, for retention between sessions.

Each TimelineItem is a high-level grouping of samples representing a Visit or a Path.

Inside each TimelineItem there is a time ordered array of LocomotionSample samples

(timelineItem.samples), first being the start, last being the stop. If data accuracy is high,

new samples will be produced about every 6 seconds. The maximum frequency is

configurable with TimelineManager.samplesPerMinute.

A path timeline item will have an activityType of .walking. Other samples of this item

might have .stationary, if a person was stopping for a few seconds in between.

https://wiki.appcelerator.org/display/guides2/Core+Motion+Module#CoreMotionModule-Activity
https://wiki.appcelerator.org/display/guides2/Core+Motion+Module#CoreMotionModule-Activity
https://github.com/sobri909/LocoKit

Technical report on multi modal tracking and activity mode recognition SimpliCITY

24

Location and Motion Recording:

• Combined, simplified Core Location and Core Motion recording

• Filtered, smoothed, and simplified location and motion data

• Near real time stationary / moving state detection

• Automatic energy use management, enabling all day recording

• Automatic stopping and restarting of recording, to avoid wasteful battery use

Installation

pod 'LocoKit'

pod 'LocoKit/LocalStore' # optional

Note: Include the optional LocoKit/LocalStore subspec if you would like to retain your

samples and timeline items in the SQL persistent store.

Instruction for High or Low Level Recording: https://github.com/sobri909/LocoKit

Fetching TimelineItems / Samples

If you wanted to get all timeline items between the start of today and now, you might do this:

let date = Date() // some specific day

let items = store.items(

 where: "deleted = 0 AND endDate > ? AND startDate < ? ORDER BY endDate",

 arguments: [date.startOfDay, date.endOfDay])

Complex Queries

You can also construct more complex queries, like for fetching all timeline items that

overlap a certain geographic region. Or all samples of a specific activity type (eg all "car"

samples). Or all timeline items that contain samples over a certain speed (eg paths

containing fast driving).

LocoKit Demo App available

https://github.com/sobri909/LocoKit

Technical report on multi modal tracking and activity mode recognition SimpliCITY

25

5 Custom Activity Recognition

A first presented custom solution is rather more an enhancement of the existing Google

Activity Recognition AR. Although it is not the current state-of-the-art it still constitutes an

effective and above all easy to implement solution with provided open source code.

The second presented solution can be rated as state-of-the-art and uses machine learning

for Activity Recognition.

5.1.1 ARshell+

https://github.com/myzhong/ARshell

Zhong (Zhong 2017) proposed ARshell+ to improve the accuracy of Google’s Activity

Recognition. The accuracy of activity detection using ARshell+ is increased

significantly, resulting in an average accuracy of 91% compared to 69,8% for the basic

Google Activity Recognition AR. ARshell+ basically uses Android detected Activities and

applies certain functions on this data to derive Activities.

The proposed solution was compared in relation to CPU usage, memory occupancy and

power consumption. ARshell+ did not have any impact on CPU usage but resulted in an

increased power consumption of 0.24 W. For memory occupancy Resident Set Size RSS

(memory occupied by a process that is held in the physical memory) and Virtual Set Size

VSS (virtual memory occupied by a process in total) were evaluated. Google activity

recognition used 7516 K RSS and 4040 K VSS, whereas ARshell+ occupied 10324 K RSS

and 5340 K VSS.

ARshell+ provides two mechanisms for delivery of the activity recognition results:

• A pull-based mechanism that replies with the latest activity when requested,

supporting request up to every second

• A notification-based mechanism that updates the recognition result per interval;

notifications are sent when an activity change is detected or per interval depending

on how ARshell+ is configured.

How does it work?

ARshell+ combines the functionality of ARshell (Zhong 2015) and ARsignal.

When the Google Activity Recognition reports a recognition result xt (list of probable

activities, consisting of tuples (probable activity a, confidence value cv)) for time t, ARshell

applies the Markov model to smooth the result and generates yt.

https://github.com/myzhong/ARshell

Technical report on multi modal tracking and activity mode recognition SimpliCITY

26

Figure 3 taken from Zhong 2015, p.42

ARshell+ flow diagram

There are 4 transitions that need to be addressed by ARshell:

1) From unknown to a specific activity

The most probable activity is proposed for yt

2) From a specific activity to unknown

Assumption: the last historical activity is the current activity yt=yt−1, with a self-

transition probability (P= 1−ε, whereεis a sufficiently small number)

3) Self-transition

A specific activity continues into next timestamp

4) Activity mode switch

A Markov smoother is applied to the Google AR service output. Experiments showed

most misclassifications (or noises) have confidence values < 60. This value is used

as a transition threshold. If the confidence value is < threshold, the Markov smoother

backtracks to previous AR service outputs and finds all tuple-list values of xt−1 and the

current tuple for each activity. We compute the confValueSum=∑(cvt,1, cvt−1,k) for each

activity. If the result is above threshold a transition occurs, otherwise the activity

mode stays the same.

Then ARsignal will maintain 15s of cellular signal data in a moving sampling window and

generates result zt based on this data. If zt is not stationary, the current activity will by yt –

otherwise another threshold value is applied. If the confidence value is below, the current

activity yt = stationary, otherwise the current activity will by yt.

Implementation

a. Include ARshell.jar to the libs of your projects

b. Add a permission to the AndroidManifest.xml:

Technical report on multi modal tracking and activity mode recognition SimpliCITY

27

c. Add 5 lines of code to get ARshell working:

• Instantiation: ARshell as = new ARshell()

• Initialise ARshell with an interval of recognition: as.init(this, 10)

• Start recognition: as.start(this)

• Get the recognition result wherever you want:

Result.getNameFromType(Result.getActivity())

Stop recognition: as.stop(this)

5.1.2 State of the Art

Human Activity Recognition HAR can be described as classification problem. Therefore,

especially machine learning techniques have been used in recent research to tackle the

problem of Activity Recognition. Feature extraction and used learning algorithms are core

aspects of any machine learning system.

Latest research shows (Suto 2018, p.13) that well-constructed Artificial Neural Networks

ANNs are more accurate and therefore a better choice than CNNs. Furthermore, CNNs are

not to be recommended for real-time HAR due to their extensive training time. Even faster

than classical ANN is Extreme Learning Machine ELM, which is a model of an artificial neural

network ANN with input hidden weights and analytically computed random output weights. It

is much faster than classical ANN models (according to Kuncan2019, p. 35).

HAR systems comprise of two major steps.

In a first step, features are derived from sensor signals. The accuracy of Activity Recognition

directly correlates with feature extraction. Therefore, feature extraction is the core aspect as

activities are distinguished and defined by them.

The second step consists in the classification process using a learning algorithm which uses

said features from the first step.

A Novel Approach for Activity Recognition with Down-Sampling 1D Local

Binary Pattern Features

Kuncan (Kuncan 2019, p.39) propose an Activity Recognition Method consisting of 6 steps

Figure 4 reproduced from Kuncan 2019, p. 39

Technical report on multi modal tracking and activity mode recognition SimpliCITY

28

Block 1 - 2: dataset comprising of data generated by accelerometer and gyroscope sensors

Block 3: application of 1D-LBP (Local Binary Pattern) and DS-1D-LBP to signals

Block 4: histogram generation of newly formed 1D-LBP and DS-1D-LBP signals

Block 5: obtain statistical features from histograms

Block 6: classification process with ELM using statistical features according to a 10-fold

cross-validation test

• Feature Extraction – DS-1D-LBP

The proposed system uses the Down Sampling-1D-LBP (Locally Binary Pattern) method for

feature extraction. The DS-1D-LBP is the application of the 1D-LBP method to different

levels of sensor signals. Advantages of this method consist in (Kuncan2019, p.35):

1) Individual values are used in all marks for feature extraction

2) Model implementation is fast and easy

3) Different feature groups can be extracted depending on the window length WL

and related sampling parameters

Data was obtained from the Kaggle (Kaggle 2019) repository, which offers an Activity Sense

Dataset. This dataset contains time series data generated by accelerometer and gyroscope

sensors of an iPhone 6s placed in the right front pocket of different subjects. Data was

obtained using the iPhone 6s with Sensing Kit, which collected information from the Core

Activity frame on iOS devices placed in the right front pocket of 24 people for 6 specified

activities. (Fig. 5)

Figure 5 taken from Kuncan 2019, p. 36

Different Time Series Data

Technical report on multi modal tracking and activity mode recognition SimpliCITY

29

Figure 6 taken from Kuncan 2019, p.37.

Visualizing the process from raw data (a) to signal value (b)

to binary string (c) and decimal value of 8-digit binary number (d)

• 1D-LBP method

Fig. 6 visualizes this process:

(a) shows the raw sensor signal

(b) the signal value (value range 0 to 255)

(c) the creation of a binary string by comparing the central value with neighbouring

values (0 if central value is lower, 1 if higher)

(d) is the decimal representation of the resulting 8-digit binary number = 1D-LBP value.

• Down Sampling 1D-LBP

According to a defined window length WL, new signals are created by taking sample values

from signals. If WL = 4, the window has four signal values. The average, median, the

minimum or maximum value of these four signal values are taken for the signal to be newly

generated. Fig. 7 shows this process: (a) the original data, (b) Level 1 DS, (c) Level 2 DS

applies the DS-Means method to the signals in (b)

The DS method has three important parameters:

1) Number of levels to be applied by the DS method

2) Window length

3) Which sample values that enter a window / which results are to be moved to a higher

level (minimum, maximum, medians or averages of values)

Technical report on multi modal tracking and activity mode recognition SimpliCITY

30

Figure 7 taken from Kuncan 2019, p. 38.

Showing the down-sampling of data within a predefined window length of 4

• Statistical Features

In this study, 12 statistical features were obtained from signal histograms. Since the dataset

offered 12 values and foreach value 12 statistical features were calculated, 144 features

were obtained for each level.

Classification - ELM

In the classification phase the extreme learning machine ELM is used, which randomly

generates input weights and threshold values. Output weights are obtained analytically. The

ELM algorithm comprises of three steps:

1) Randomly generate: Wi = (Wi1, Wi2, …, Win) –input weights and hidden layer bi

threshold values

2) Hidden layer H output calculation (Ok = output value)

3) ß output weights are calculated according to (ß = H+Y; Y is to decide the property).

Ultimately, the training process wants to find the smallest squares solution in the Hß = Y

linear equation in ELM.

Technical report on multi modal tracking and activity mode recognition SimpliCITY

31

Figure 8 from https://www.slideshare.net/CSAalto/applications-of-machine-learning-

59300486, accessed October 10 2019

Extreme Learning Machine ELM model

The classification was performed according to a 10fold cross-validation. Kuncan (2019, p.

40) note best results with a WL parameter of 4. It shall be noted that the sampling parameter

(which sample values are used) correlate with the success rate. Hence it is optimal to test

different settings for distinct applications.

The success of the ELM model correlates with the activation function used in the neurons

and the number of neurons in the hidden layer. In this study, best results were obtained

using the sigmoid activation function. In addition, a higher number of neurons (100) resulted

in better success rates.

In addition, the study also tested different machine learning methods for classification (Fig.

9), with ELM being the best method with a success rate of 96.87%.

Figure 9 taken from Kuncan 2019, p. 42.

Success Rates Observed with Different Machine Learning Methods

Note

Another interesting approach (orientation independent, real-time) with a success rate of 95%

was proposed by Siirtola in 2012 (Also cited by Kuncan2019). As one of the few studies also

aspects like CPU usage are considered, which are under 5% for the proposed method.

https://www.slideshare.net/CSAalto/applications-of-machine-learning-59300486
https://www.slideshare.net/CSAalto/applications-of-machine-learning-59300486

Technical report on multi modal tracking and activity mode recognition SimpliCITY

32

6 Conclusions

In regard of already available Activity Recognition APIs, it is recommended to implement an

API for the targeted (cross-)platform, all of which provide multi-modal Activity Recognition

functionality. If gathered data does not suffice for requested information output, additional

API implementations might be necessary, e.g. obtain health relevant information. In addition,

depending on necessary input information (e.g. gender, age) for additional functionality

privacy settings might become an issue.

6.1 Activity Tracking Implementation and Learnings

The SimpliCITY cross-platform mobile app pilot is developed using Visual Studio and

Xamarin. Proprietary Activity Recognition APIs are used for Activity Recognition on each

platform. Activities consist of a type (Still, Walking, Running, Cycling, Automotive, Unknown)

and have a confidence value on correct type recognition. To improve the accuracy of Activity

Recognition we applied some adaptions. During optimisations we noted, that in Android, the

reduction of the activity update interval didn’t have any impact on accuracy of Activity mode

detection.

First, we only updated an Activity when the confidence level was above a low threshold. In

Android, the confidence value has a range of 0-100, whereas iOS uses enums of Low,

Medium and High. Therefore, iOS enums were mapped to values (Low – 33, Medium – 66,

High – 99). As a result, Activity updates occurred if the confidence value was above 33.

Second, the Activity type “Unknown” was ignored. Most of the time this type was detected

when Activity transitions occurred.

Third, on Android Activity updates were used instead of Activity transition updates because

they resulted in a higher accuracy.

Latency

We found that latencies for Activity Recognition differed quite strongly in relation to Activity

type. Types like “Walking”, “Still” and “Automotive” were detected fairly fast in an average

time of about 15 seconds. This time could be reduced when the smartphone was not

handheld but in a fixed position.

Latencies were highest (on average about a minute) when cycling was involved. This

observation also applies to transitioning from automotive to another state.

In iOS latencies regarding the Activity type “Walking” could be as fast as a second, but also

meant that handheld devices would trigger “Walking” on slight position changes, although the

person was standing.

Accuracy

Technical report on multi modal tracking and activity mode recognition SimpliCITY

33

The accuracy of Activity type recognition differs in type and speed. Activities like “Still”,

“Walking” and “Automotive” were very accurate unless the car would be driving very slowly

and had problems to differentiate between “Automotive”, “Cycling” and “Unknown”.

We had most problems with the “Cycling” mode detection. In iOS cycling was only detected

when location updates occurred at the same time. On both platforms, (very) slow cycling

speeds did not trigger “Cycling” detection at all. Otherwise “Cycling” recognition had an

average latency of about a minute.

Since bike tracking always amounts to saving of locations and Activities the correctness of

Activity Recognition can be deduced and verified by getting an average speed for a route

after bike tracking has been stopped. This enables us to add an Activity check, providing a

speed range for cycling. It also enables us to gather data on detected Activity types during

bike tracking and evaluate the accurateness.

Only if the accuracy of Activity Recognition does not suffice and workarounds like comparing

a route’s average speed with detected Activity types do not output expected results, custom

AR systems should come into focus. Custom AR systems ultimately mean a good deal of

time and effort for developing them. With this in mind, we would like to point out some

problems and challenges in current research and available datasets for training models,

which would have to be considered and are relevant for custom solutions.

Although Activity Recognition using sensor-based systems (e.g. smartphones) are a vast field

of research, there is a lack of standardized datasets, recognition tasks and evaluation criteria

as Wang stress (Wang 2019, p. 10870). This problem is of increased importance, since simple

success rates may not be as meaningful as one would assume considering important criteria

for real-world applications.

Consumption analysis

Most studies lack a consumption analysis (also in regard of used sensors, number of features)

as Bhooshan (Bhooshan 2017, p.487) states. This analysis would be of great interest to

decide if a found method was worth implementing. Although research exists on energy

efficiency on HAR systems, offered improvements might only be useful for certain feature

extraction methods.

Orientation-(In)Dependence

Furthermore, some methods use a smartphone fixed in orientation and position when

gathering data, whereas an orientation-independent system would be far more interesting for

real-world applications. Ustev (Ustev 2013) propose a solution for this problem.

Activity/Transport Modes

Different number and types of activities between different research also complicates

comparisons. Some solutions might not include relevant Activity types for one’s project

making it impossible to assess how accurate solutions might be.

Technical report on multi modal tracking and activity mode recognition SimpliCITY

34

DataSet

Basically, many of these problems are directly related to the datasets. Datasets comprise of

different amounts of data from x smartphone sensors collected from x people carrying the

smartphone in one or more positions. Apart from the number of subjects also their age is of

importance, since a test group consisting of elderly will gather quite different data signals for

multiple activities than a more heterogenous group.

6.2 Activity Recognition and Data Insights

Activity and location information allow drawing conclusions on different aspects. Some of

which might need additional data to be collected but are still mentioned in the following

paragraphs.

Travel Patterns – Urban Areas

In general, data on preferred transport modes but also, if according data is provided, for

distinct population groups categorized by gender, age, marital status etc. can be collected.

Thus, valuable insight of public transport acceptance can be gathered for different groups. If

special offers for target groups are announced, feedback and impact can be gathered. In

addition, the focus can easily shift to specific regions. Problem and model regions can be

compared, and differences recognized and assessed. As a result, necessary improvements

can be more easily identified and targeted.

Preferred transport modes are categorizable for distinct time periods (weekdays, weekends,

or other time spans) and regarding weather conditions. This might have impact on future

ticket offers or even the planning of transport systems. Not only a high demand as such but

desirable combinations with e.g. possibility for bike storage / transport / rent can be

recognized and corresponding offers developed.

It is possible to deduce street condition (applicable for cycling, vehicle mode) (see Sattar

2018, Zang 2018) which stresses the need for road maintenance and might provide insight

why going by bike isn’t a likely choice in certain areas.

People’s travel patterns allow deductions for home and workplace and show daily travel

routines. Relevant information e.g. route information, suggestions on route optimization can

be sent when a person is more likely to read a message (e.g. not while riding a bike). If

construction work will affect a person’s daily route, information on duration and redirection

can be provided, thus offering an improved service. This also applies for delays of relevant

trains etc. Since travel patterns show the average travel radius of a person, different travel

types can be assessed.

Other relevant information includes city activities like bike service checks, new/changed

tickets, special offers, and points of interest. The possibility to give feedback on and provide

suggestions for distinct transport systems is of importance to identify chances or problems

which have not been on the radar yet. At the same time, people can raise their concerns.

Technical report on multi modal tracking and activity mode recognition SimpliCITY

35

Health-awareness is on the rise. Therefore, another relevant topic are health and sport

related information. Apart from information like steps per day, minutes riding a bike, calorie

consumption, small reminders which motivate people to do some small workouts after long

periods of sitting (at work) help to keep fit. If the workday is too long small feedback for

work/life-balance can be provided. Furthermore, push notifications regarding weather

conditions can notify a person to pick up the umbrella before leaving the house.

Activity and location information give powerful insights into people’s travel behaviour and

allow to draw conclusions for a multitude of aspects. Above mentioned possible data insights

are only some exemplary examples, which can be more refined as the focus shifts and

experience is gained.

7 Lessons learned

In the SimpliCITY cross-platform mobile app activity recognition is implemented by using

proprietary APIs for each platform. Both offer the detection of most important transportation

modes, for which machine learning is used. It can only be assumed that Google and Apple

provide updates at some intervals.

It was found that in Android, constant activity updates provided more reliable feedbacks than

using updates only on transportation mode transitions (enter and exit). Initially we assumed,

that activity mode transitions would be preferable to constant updates because only a

change in transportation mode is of interest. But it turned out, that these transitional updates

were less reliable. Therefore, we opted for constant activity updates.

Changing the time-interval (in ms) for activity updates did not have any real impact on

results, unless the interval was expanded to several seconds, thus increasing the latency but

becoming more battery friendly.

In iOS, the biggest surprise was that cycling mode detection was only successful as long as

location updates occurred at the same time.

Detection of different activity modes was slightly faster when the device was in a fixed

position and not handheld or loosely in a bag. But it cannot be assumed that many users will

have bike phone holders.

Although activity mode recognition can be very accurate, especially cycling proved to be

problematic. This was all the more true, if speeds were very slow. In that case, there often

was no cycling mode detection at all. In addition, latencies for cycling mode detection were

quite high – around a minute on average.

As mentioned before, we improved activity mode detection by allowing updates only above a

certain activity’s confidence value and if the activity type was not of type “UNKNOWN”.

In the SimpliCITY app the user must start bike tracking explicitly. First, because bike tracking

is resource demanding due to the fact of location updates. Activity updates are less battery

demanding. Second, the user is in more control. He or she can opt when to allow the app to

access the device’s location.

Technical report on multi modal tracking and activity mode recognition SimpliCITY

36

When bike tracking is active, every saved location has a reference to the current activity

mode (transportation mode). On finishing bike tracking, the distance and average speed for

the just finished route are saved, thus enabling us to assess the data at any time. We can

analyse which activity modes have been saved for a route X, e.g. 20% walking, 80% cycling.

In a next step we are able to validate if the average speed is consistent with or contradicts

the activity type. With this safe check, the user cannot cheat and collect points for a route

which was driven in a car. Moreover, we can evaluate how accurate proprietary activity mode

recognition APIs are and have information on (a) user’s average speed when cycling,

walking ...

Starting the bike tracking service explicitly also reduces the latency problem. Of course, the

transportation mode is detected with a certain delay, but the starting and finishing locations

are accurate (on button press). This also means that the tracked route’s distance is accurate

in the current setup. If bike tracking would solely rely on cycling mode detection to start and

stop the tracking, the system would track a far shorter distance if a route had many stops

(e.g. traffic light) due to the long latency and the uncertainty of accurate detection.

The current setup avoids aforementioned problems, improves the accuracy of bike tracking

itself and offers ways to cross check results from e.g. a route with some dominant

transportation mode.

Technical report on multi modal tracking and activity mode recognition SimpliCITY

37

8 References

Apple WWDC 2014. "Asciiwwdc - Motion Tracking With The Core Motion Framework".

Asciiwwdc. Accessed October 14 2019. https://asciiwwdc.com/2014/sessions/612.

Bhooshan, Jyotshana. 2017. “Review on Recognition of Human Activity through Smartphone

Built-In Sensors”. International Journal of Advanced Research in Computer

Engineering & Technology (IJARCET), 6(4), 482-489. ISSN:2278–1323.

Cross, Orrin. 2018. "Beta Testing Google’S New Activity Transition API". Medium. Accessed

October 14 2019. https://medium.com/life360-engineering/beta-testing-googles-new-

activity-transition-api-c9c418d4b553.

Jackpotek. 2013. "Experimenting With Google Play Services – Activity Recognition". FP7

Carmesh: The Blog. Accessed October 14 2019.

https://carmesh.wordpress.com/2013/05/31/experimenting-with-google-play-services-

activity-recognition/.

Kaggle Inc. 2019. "Kaggle: Your Home For Data Science". Kaggle.Com. Accessed October

14 2019. https://www.kaggle.com/.

Kuncan, Fatma, Yilmaz Kaya and Melih Kuncan. 2019. "A Novel Approach for Activity

Recognition with Down-Sampling 1D Local Binary Pattern." Advances in Electrical and

Computer Engineering, 19(1), 35-45. https://doi.org/10.4316/AECE.2019.01005.

Prajakt. 2018. "Hypertrack Supports The New Transition API For Android Activity

Recognition". Medium. Accessed October 14 2019.

https://medium.com/hypertrack/hypertrack-supports-the-new-transition-api-for-android-

activity-recognition-5a5f22930285.

Sattar, Shahram, Songnian Li, and Michael Chapman. 2018. "Road surface monitoring using

smartphone sensors: A review." Sensors, 18(11), 3845.

https://doi.org/10.3390/s18113845.

Siirtola, Pekka and Juha Röning. 2012. “Recognizing Human Activities User-independently

on Smartphones Based on Accelerometer Data”. International Journal of Interactive

Multimedia and Artificial Intelligence, 1(5), 38-45.

https://doi.org/10.9781/ijimai.2012.155.

Stogaitis, Marc, Tajinder Gadh and Michael Cai. 2018. "Activity Recognition’S New Transition

API Makes Context-Aware Features Accessible To All Developers". Android

Developers Blog. Accessed October 14 2019. https://android-

developers.googleblog.com/2018/03/activity-recognitions-new-transition.html.

Suto, Joszsef, Stefan Oniga, Claudia Lung and Ioan Orha. 2018. Comparison of offline and

real-time human activity recognition results using machine learning techniques. Neural

Computing and Applications, 1-14. https://doi.org/10.1007/s00521-018-3437-x.

Ustev, Yunus Emre, Ozlem Durmaz Incel and Cem Ersoy. 2013. "User, device and

orientation independent human activity recognition on mobile phones: Challenges and

a proposal." Proceedings of the 2013 ACM conference on Pervasive and ubiquitous

https://asciiwwdc.com/2014/sessions/612
https://medium.com/life360-engineering/beta-testing-googles-new-activity-transition-api-c9c418d4b553
https://medium.com/life360-engineering/beta-testing-googles-new-activity-transition-api-c9c418d4b553
https://carmesh.wordpress.com/2013/05/31/experimenting-with-google-play-services-activity-recognition/
https://carmesh.wordpress.com/2013/05/31/experimenting-with-google-play-services-activity-recognition/
https://www.kaggle.com/
https://doi.org/10.4316/AECE.2019.01005
https://medium.com/hypertrack/hypertrack-supports-the-new-transition-api-for-android-activity-recognition-5a5f22930285
https://medium.com/hypertrack/hypertrack-supports-the-new-transition-api-for-android-activity-recognition-5a5f22930285
https://doi.org/10.3390/s18113845
https://www.researchgate.net/journal/1989-1660_International_Journal_of_Interactive_Multimedia_and_Artificial_Intelligence
https://www.researchgate.net/journal/1989-1660_International_Journal_of_Interactive_Multimedia_and_Artificial_Intelligence
https://doi.org/10.9781/ijimai.2012.155
https://android-developers.googleblog.com/2018/03/activity-recognitions-new-transition.html
https://android-developers.googleblog.com/2018/03/activity-recognitions-new-transition.html
https://doi.org/10.1007/s00521-018-3437-x

Technical report on multi modal tracking and activity mode recognition SimpliCITY

38

computing adjunct publication, ACM, 1427-1436.

https://doi.org/10.1145/2494091.2496039.

Veugen, Paul. 2015. "Taking Activity Tracking To The Next Level With The Iphone 6 And

6S". Medium. Accessed October 14 2019. https://medium.com/@pveugen/taking-

activity-tracking-to-the-next-level-with-the-iphone-6-and-6s-58c0b0d12847.

Wang, L. et al. 2019. Enabling reproducible research in sensor-based transportation mode

recognition with the Sussex-Huawei dataset. IEEE Access, 7, 10870-10891.

https://doi.org/10.1109/ACCESS.2019.2890793.

Zang, Kaiyue, Jie Shen, Haosheng Huang, Mi Wan, and Jiafeng Shi. 2018. "Assessing and

mapping of road surface roughness based on GPS and accelerometer sensors on

bicycle-mounted smartphones." Sensors 18(3), 914.

https://doi.org/10.3390/s18030914.

Zhong, M., Jiahui Wen, Peizhao Hu and Jadwiga Indulska. 2015. “Advancing Android Activity

Recognition Service with Markov Smoother“. Accessed October 14 2019.

http://scholarworks.rit.edu/other/841.

Zhong, M., J. Wen, P. Hu and J. Indulska, 2017. Advancing Android activity recognition

service with Markov smoother: Practical solutions. Pervasive and Mobile Computing,

38, 60-76. https://doi.org/10.1016/j.pmcj.2016.09.003

https://doi.org/10.1145/2494091.2496039
https://medium.com/@pveugen/taking-activity-tracking-to-the-next-level-with-the-iphone-6-and-6s-58c0b0d12847
https://medium.com/@pveugen/taking-activity-tracking-to-the-next-level-with-the-iphone-6-and-6s-58c0b0d12847
https://doi.org/10.1109/ACCESS.2019.2890793
https://doi.org/10.3390/s18030914
http://scholarworks.rit.edu/other/841
https://doi.org/10.1016/j.pmcj.2016.09.003

	1 Executive Summary
	2 Administrative Information
	3 Introduction
	1
	4 Activity Recognition API
	4.1.1 Detected Activity Modes for Different Platforms in Overview:
	4.1.2 Power Consumption
	4.1.3 Accuracy
	4.2 Cross-Platform Activity Recognition
	4.2.1 React native activity recognition (Artistic License 2.0)
	4.2.2 Xamarin.Forms for iOS and Android
	4.2.3 Flutter
	4.2.4 Unity Activity Recognition (Price €4.47, no ratings yet)

	4.3 Activity Recognition in Android
	4.3.1 Google Activity Recognition

	4.4 Activity Recognition in iOS
	4.4.1 Apple: CMMotionActivityManager - Core Motion framework
	4.4.2 LocoKit

	5 Custom Activity Recognition
	5.1.1 ARshell+
	5.1.2 State of the Art
	A Novel Approach for Activity Recognition with Down-Sampling 1D Local Binary Pattern Features

	6 Conclusions
	6.1 Activity Tracking Implementation and Learnings
	6.2 Activity Recognition and Data Insights

	7 Lessons learned
	8 References

